Fractional Problems with Right-handed Riemann-liouville Fractional Derivatives
نویسندگان
چکیده
Abstract: In this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems are also discussed. A few examples illustrate the results.
منابع مشابه
New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملOn asymptotic stability of Prabhakar fractional differential systems
In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given.
متن کاملOn asymptotic stability of Weber fractional differential systems
In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.
متن کاملNumerical Method for Solving Fractional Optimal Control Problems
1 Professor and author of correspondence, Phone: +91 3222-283084, Fax: +91 3222 255303, Email: [email protected] ABSTRACT A numerical technique for the solution of a class of fractional optimal control problems has been proposed in this paper. The technique can used for problems defined both in terms of Riemann-Liouville and Caputo fractional derivatives. In this technique a Reflection Op...
متن کاملHomotopy perturbation method for solving fractional Bratu-type equation
In this paper, the homotopy perturbation method (HPM) is applied to obtain an approximate solution of the fractional Bratu-type equations. The convergence of the method is also studied. The fractional derivatives are described in the modied Riemann-Liouville sense. The results show that the proposed method is very ecient and convenient and can readily be applied to a large class of fractional p...
متن کامل